Pages

Monday 20 February 2012

Hierarchical Model











The hierarchical data model organizes data in a tree structure. There is a hierarchy of parent and child data segments. This structure implies that a record can have repeating information, generally in the child data segments. Data in a series of records, which have a set of field values attached to it. It collects all the instances of a specific record together as a record type. These record types are the equivalent of tables in the relational model, and with the individual records being the equivalent of rows. To create links between these record types, the hierarchical model uses Parent Child Relationships. These are a 1:N mapping between record types. This is done by using trees, like set theory used in the relational model, "borrowed" from maths. For example, an organization might store information about an employee, such as name, employee number, department, salary. The organization might also store information about an employee's children, such as name and date of birth. The employee and children data forms a hierarchy, where the employee data represents the parent segment and the children data represents the child segment. If an employee has three children, then there would be three child segments associated with one employee segment. In a hierarchical database the parent-child relationship is one to many. This restricts a child segment to having only one parent segment. Hierarchical DBMSs were popular from the late 1960s, with the introduction of IBM's Information Management System (IMS) DBMS, through the 1970s. 


Network Model


The popularity of the network data model coincided with the popularity of the hierarchical data model. Some data were more naturally modeled with more than one parent per child. So, the network model permitted the modeling of many-to-many relationships in data. In 1971, the Conference on Data Systems Languages (CODASYL) formally defined the network model. The basic data modeling construct in the network model is the set construct. A set consists of an owner record type, a set name, and a member record type. A member record type can have that role in more than one set, hence the multiparent concept is supported. An owner record type can also be a member or owner in another set. The data model is a simple network, and link and intersection record types (called junction records by IDMS) may exist, as well as sets between them . Thus, the complete network of relationships is represented by several pairwise sets; in each set some (one) record type is owner (at the tail of the network arrow) and one or more record types are members (at the head of the relationship arrow). Usually, a set defines a 1:M relationship, although 1:1 is permitted. The CODASYL network model is based on mathematical set theory. 


Relational Model






(RDBMS - relational database management system) A database based on the relational model developed by E.F. Codd. A relational database allows the definition of data structures, storage and retrieval operations and integrity constraints. In such a database the data and relations between them are organised in tables. A table is a collection of records and each record in a table contains the same fields. 


Properties of Relational Tables:


Values Are Atomic
Each Row is Unique
Column Values Are of the Same Kind
The Sequence of Columns is Insignificant
The Sequence of Rows is Insignificant
Each Column Has a Unique Name 

Certain fields may be designated as keys, which means that searches for specific values of that field will use indexing to speed them up. Where fields in two different tables take values from the same set, a join operation can be performed to select related records in the two tables by matching values in those fields. Often, but not always, the fields will have the same name in both tables. For example, an "orders" table might contain (customer-ID, product-code) pairs and a "products" table might contain (product-code, price) pairs so to calculate a given customer's bill you would sum the prices of all products ordered by that customer by joining on the product-code fields of the two tables. This can be extended to joining multiple tables on multiple fields. Because these relationships are only specified at retreival time, relational databases are classed as dynamic database management system. The RELATIONAL database model is based on the Relational Algebra. 




Regards,

Ruchika Mandore  [ MCA ] 
Software Engineer
AeroSoft Corp

On Line Assistence  :
Gtalk                    :   ruchika.aerosoft@gmail.com
Y! Messenger             :   ruchika.aerosoft@yahoo.com
Rediff Bol               :   ruchika.aerosoft@rediffmail.com
MSN                      :   ruchika.aerosoft@hotmail.com


1 comment: